Current and Future Generation

Issues affecting current and future nuclear generation

  • Nuclear Power in the World Today

    There are now over 430 commercial nuclear power reactors operating in over 30 countries. They provide about 13.5% of the world's electricity. 56 countries operate a total of about 240 research reactors and a further 180 nuclear reactors power some 150 ships and submarines.

  • Outline History of Nuclear Energy

    The science of atomic radiation, atomic change and nuclear fission was developed from 1895 to 1945. From 1945 attention was given to harnessing this energy in a controlled fashion for naval propulsion and for making electricity.

  • World Energy Needs and Nuclear Power

    World Energy Needs and Nuclear Power (25 November 2008) The world will need greatly increased energy supply in the next 20 years, especially cleanly-generated electricity.   Electricity demand is increasing much more rapidly than overall energy use and is likely to almost double from 2004 to 2030.  

  • Plans For New Reactors Worldwide

    Nuclear power capacity worldwide is increasing steadily, with over 60 reactors under construction in 13 countries. Most reactors on order or planned are in the Asian region. Significant further capacity is being created by plant upgrading.

  • The Nuclear Renaissance

    Increasing energy demand, plus concerns over climate change and dependence on overseas supplies of fossil fuels are coinciding to make the case for increasing use of nuclear power. 

  • International Framework for Nuclear Energy Cooperation

    The International Framework for Nuclear Energy Cooperation (IFNEC), developed from the former Global Nuclear Energy Partnership (GNEP), is a partnership of countries aiming to ensure that new nuclear in initiatives meet the highest standards of safety, security and non‐proliferation.

  • Cooperation in Nuclear Power

    The nuclear power industry has various arrangements for cooperation among utilities, and internationally, among government and United Nations nuclear agencies. The World Association of Nuclear Operators is a particularly valuable means of international assistance.

  • Accelerator-driven Nuclear Energy

    Powerful accelerators may be linked to conventional nuclear reactor technology in an accelerator-driven system (ADS) to transmute long-lived radioisotopes in used nuclear fuel into shorter-lived fission products. 

  • Electricity Transmission Grids

    National and regional grid systems connecting generators with wholesale customers are just as important as electrical power generation.Investment in these is often on a similar scale to generation capacity.

  • Fast Neutron Reactors

    Fast neutron reactors offer the prospect of vastly more efficient use of uranium resources and the ability to burn actinides which are otherwise the long-lived component of high-level nuclear wastes. Some 400 reactor-years experience has been gained in operating them.

  • Nuclear Fusion Power

    Fusion power offers the prospect of an almost inexhaustible source of energy for future generations, but it also presents so far insurmountable scientific and engineering challenges.

  • Thorium

    Thorium is more abundant in nature than uranium. It is fertile rather than fissile, and can be used in conjunction with fissile material as nuclear fuel. The use of thorium as a new primary energy source has been a tantalizing prospect for many years.

  • The Nuclear Debate

    As concern about anthropogenic climate change has grown, a number of high-profile environmentalists have decided that this is a more serious problem than their previous concerns with nuclear power.

  • Cooling Power Plants

    Like coal and gas-fired plants, nuclear power plants use cooling to condense the steam used to drive the turbines that generate the electricity. Once-through, recirculating or dry cooling may be used. Most nuclear plants also use water to transfer heat from the reactor core.

Share