WNA Weekly Digest Archive 2018


Quiet year for nuclear power development in 2017

2017 saw four new reactors connected to grids for the first time, only four construction starts, and the retirement of three reactors. A net gain of 1012 MWe capacity on line plus two small uprates totalling 31 MWe. All the new grid connections were Chinese in one way or another: Chashma 4 in Pakistan, 315 MWe net built by China, Yangjiang 4 and Fuqing 4, each 1020 MWe, and then Tianwan 3 of 990 MWe net in China (see above).  Construction starts, with first major concrete, were Shin Kori 5 in South Korea, Kudankulam 3 a Russian unit, in India, Rooppur 1 a Russian unit in Bangladesh, and Xiapu fast reactor in China (see above). China continues to pause its new build program pending the start up of the first Generation 3+ Westinghouse AP1000 reactors at Sanmen and Haiyang, since these are basic to further plans. Their first Areva EPR is also due to start up soon, though with less forward relevance in China.

The three reactors finally shut down were Kori 1 in South Korea, after 40 years operation, Oskarshamn 1 in Sweden, after 45 years, and Gundremmingen B in Germany after only 33 years - by political edict.  These removed 2333 MWe net from world clean reliable capacity.
(amended 6/1/18 to include Rooppur & Shin Kori)

New reactor fuel gets corporate boost as Enfission is launched

Since the early days of nuclear power practically all nuclear reactor fuel has been as uranium oxide, a stable ceramic with high melting point. However, it has some features which are not ideal, and one stream of research has been returning to using metal fuels. The leader here has been Lightbridge, which has designed zirconium-uranium alloy 4-lobed fuel rods with much higher surface area than normal ones. The uranium has higher enrichment than usual to compensate for the alloy dilution which gives it a much higher melting point than pure uranium metal. However, because of the five times better thermal conductivity, the fuel actually functions at a much lower temperature than ceramic fuels. It is expected to give 17% more power in existing reactors with little modification, and 30% more in those designed for it. Its purpose is to improve both safety and economics.

In March 2016 Lightbridge entered into an exclusive joint development agreement with Areva NP (now Framatome) to set up a 50-50 US-based joint venture that would develop, fabricate and commercialize fuel assemblies based on the metallic fuel technology. This has now been launched as Enfission.  Framatome is a leading fuel manufacturer, with 27% of world capacity for light water reactor fuels. It is owned by EdF (75.5%), Mitsubishi Heavy Industries (19.5%) and Assystem (5%). Several major US utilities - Exelon, Duke, Dominion and Southern Company - have been involved with Lightbridge’s development and the first use of the new fuel in a US commercial power reactor is expected about 2021, with commercial sales by 2026.
WNN 26/1/18  Fuel fabrication


China starts construction of large fast reactor

After several years’ uncertainty regarding technology options, construction has started on an essentially indigenous 600 MWe China demonstration fast reactor (CDFR).  The CFR600 is being built for China National Nuclear Corporation (CNNC) at Xiapu in Fujian province. It will run on mixed-oxide fuel and is expected on line in 2023. It is derived from the successful 65 MWt China Experimental Fast Reactor (CEFR) which has operated since July 2010 and is incidentally producing 20 MWe. It was built by Russia’s OKBM Afrikantov at the China Institute of Atomic Energy (CIAE) near Beijing. CNNC expects fast reactors to be the main technology deployed in China by mid century and calls this “a landmark project for … China’s nuclear industry”. A 2016 projection has five CFR600 units being built by 2030, followed from there by the commercial-scale CFR1000, with over one hundred in service by 2050.

CDFR ‘project 2’ related to a high-level agreements with Russia in 2009 and 2012, which envisaged building a pair of BN-800 fast reactors such as unit 4 now operating at Beloyarsk. These were due to be built inland at Sanming in Fujian province from 2013. In the event the Beloyarsk BN-800 is more of a test bed for new fuels than a pioneer commercial plant, and Russian focus is now on preparing to build multiple BN1200 units as full-size fast reactors.
WNN 29/12/17.  China NP

New reactor connected to grid in China

Tianwan 3 has now been connected to the grid in Jiangsu province after 60 months construction.  This AES91 plant uses a Russian VVER-1000 reactor, producing 990 MWe net, with Areva instrument and control systems. The turbine generator sets are from China’s Dongfang Electric, using Alstom Arabelle low-speed technology. It started up in September.

Units 5 & 6 at Tianwan are Chinese ACPR1000 units under construction, but units 7 & 8 are planned as 1200 MWe Russian VVER reactors.
WNN 2/1/18.  China NP


US extends tax break for new nuclear capacity

A Bipartisan Budget Act passed by congress and signed into law includes nuclear production tax credits that were initially created under the Energy Policy Act 2005 to provide federal support for projects like Georgia Power’s Vogtle units 3 & 4. Previously new reactors had to be operating before 2021 to be eligible, but this deadline is now removed, so that tax credits of $18/MWh over eight years are available for up to 6000 MWe of new capacity.  So both Vogtle 3 & 4 as well as the NuScale Power’s small modular reactor (SMR) project at the Idaho National Laboratory could benefit.  At 90% capacity each new Vogtle reactor would produce 8.8 TWh/yr and hence receive $158 million per year.

The US Nuclear Energy Institute hailed the Act as “a vote for continued American leadership in nuclear energy, environmental stewardship and thousands of jobs.” Similar production tax credits have been paid for output from unlimited wind and solar PV capacity for many years, indexed to inflation and hence now $23/MWh, coupled with priority grid access for these unreliable sources. These arrangements severely handicap the competitiveness of power from the 99 US established nuclear reactors.
WNN 12/2/18.  US NP

Westinghouse sold to Canadian investment company

Westinghouse in the USA filed for Chapter 11 bankruptcy in March 2017, after struggling to fund growing cost overruns at its two US nuclear plant projects. The company listed assets of $4.3 billion and liabilities of $9.4 billion in the filing.  Since then, its parent Toshiba Corporation has had to pay billions of dollars in damages for two reactor construction projects in the USA - $8.9 billion was provided in its accounts in May, and it has been eager to sell the whole company. Westinghouse nuclear fuel business and its operating plant businesses remain profitable.  Now Brookfield Business Partners, together with institutional partners, has agreed to acquire the whole company from Toshiba for total of about $4.6 billion in equity and funded by long-term debt. The sale will be through the bankruptcy process.  Brookfield is "focused on owning and operating high-quality businesses that benefit from barriers to entry and/or low production costs." Other bidders have 30 days to make competing offers.

Westinghouse was arguably the premier nuclear reactor designer of the last century, with about half the world’s reactors based on its designs to some degree. Nevertheless, it has struggled commercially. In 1999 it was acquired by British Nuclear Fuels Ltd for $1.1 billion and promptly took over Sweden’s ABB for $0.5 billion. In 2006 BNFL sold it for $5.4 billion to Toshiba (77%) and Shaw Group (20%), “taking Toshiba Group's energy systems business to the global level”. Westinghouse then partnered with the Shaw Group for engineering, procurement, and construction (EPC) contracts, particularly the two AP1000 projects in USA. Shaw was taken over by CB&I in 2013 for about $3 billion. Then in 2015 Westinghouse effectively bought it for $229 million after CB&I had incurred major losses on the business which jeopardised the two US projects. Westinghouse announced that “This deal supports (our) strategic growth initiatives by expanding the company’s capacities across its global footprint,” notably by taking it into nuclear plant construction.

In China, Westinghouse and Shaw (now CB&I) have contracts with the State Nuclear Power Technology Corporation (SNPTC) for the four AP1000 units being built there, the first two of which are expected on line early this year, but these extend only to oversight of construction.  The construction role in USA arising from Westinghouse’s disastrous purchase of CB&I Stone & Webster was the basis of Toshiba’s problems.

Toshiba also owns NuGeneration’s 3.4 GWe Moorside project in UK, and discussions are well advanced to sell this to Korea Electric Power Company (KEPCO).
WNN 4 & 18/1/18  US NP

US states call for action on used fuel

On the 20th anniversary of the US Department of Energy’s default on its obligation to take over management and disposal of used nuclear fuel, the national organization of state public utility commissions has called on the Trump administration and Congress to appropriate funds needed to restart the Yucca Mountain repository program. "It has been 36 years since the Nuclear Waste Policy Act became law and 20 years since the government defaulted on its obligation," the president of the National Association of Regulatory Utility Commissioners reminded the government. "We still have no nuclear repository, and worse yet, we don't even have the semblance of a nuclear waste program," he said. Under the Nuclear Waste Policy Act of 1982, DOE was to begin disposing of utility spent fuel by January 31, 1998. The nuclear utilities would fund that program with a 0.1 cent per kilowatt hour fee collected from customers in relation to nuclear-generated electricity sold. Today all the used fuel remains, albeit safely and securely, at reactor sites.

DOE suspended collection of the fee in 2014 under a federal court order after it dismantled the repository program at Yucca Mountain, Nevada four years earlier, due to political pressure under the Obama administration. "The Nuclear Waste Fund currently has a balance well in excess of $30 billion and continues to earn interest of more than $1 billion a year, yet any progress on the program is constrained by the Congressional failure to provide meaningful funding." New legislation to address the matter is currently stalled in congress.
WNN 1/2/18  US NFC



Name change: Areva’s subsidiary New NP, taken over largely by EDF at the end of December, has been renamed Framatome. This is the name of its French predecessor to 2006.
WNN 4/1/18.  France


Further German reactor shut down

As reported last week, RWE’s 1284 MWe Gundremmingen-B reactor was finally shut down at the end of December in line with German government policy, after 33 years operation at around 90% average capacity factor. This is the tenth unit to be closed post-2011 and leaves only seven power reactors in operation in Germany with a combined generating capacity of 9444 MWe, as the country’s CO2 emission reduction falls well short of target. The next scheduled closure of a German reactor is EnBW's 1392 MWe Phillipsburg 2 pressurised water reactor in 2019.
WNN 2/1/18.  Germany, Energiewende


New Russian reactor on line

The fourth Rostov reactor in the Volga region has been connected to the grid, with Mr Putin there for the occasion.  The 1011 MWe (net) unit started up five weeks earlier.  It is Russia's 36th reactor in a fleet providing 18% of the country's electricity, and which will now meet more than half the demand in the southern region.  It is the last of the successful VVER-1000/V320 series of Russian reactors, and new construction is of 1200 MWe models.  From mid March, with the completion of a new grid link, it is reported that the Rostov power plant will supply Crimea, captured from Ukraine in 2014.
WNN 1/2/18.   Russia NP

New Russian reactor starts up

The first of two 1170 MWe (gross) reactors comprising phase II of the Leningrad nuclear power plant has been started up at Sosnovy Bor, near St Petersburg. Eventually four of the new VVER-1200 reactors will replace the four operating RBMK units there, commissioned from 1974.  Construction of Leningrad II-1 started in October 2008, with unit 2 being 18 months behind. These are the first reactors of their particular type (V491).
WNN 6/2/18.   Russia NP

Russia clears floating nuclear power plant for deployment

The Russian State Expert Examination Board (Glavgosexpertiza) for major infrastructure has approved the deployment of the floating nuclear power plant Akademik Lomonosov at Russia's northernmost city of Pevek. It will be operated by by Rosenergoatom, the nuclear power plant operator subsidiary of Rosatom. At present it is still at the Baltiysky Zavod shipyard in St Petersburg. In May it will be towed through the Baltic Sea and around Norway to the Atomflot base at Murmansk for fuel loading and start-up about October, before continuing to Pevek for commissioning in 2019 after licensing by the nuclear regulator Rostechnadzor. The 21,500 tonne hull - 144 metres long, 30 m wide - was launched in June 2010, and the two 35 MWe KLT-40S reactors, similar to those in icebreakers, were installed in October 2013. The plant is intended to replace the 44 MWe capacity of the 1970’s Bilibino nuclear power plant in the Chukotka district.
WNN 11/1/18.  Russia NP



You may also be interested in