WNA Weekly Digest Archive 2018


Quiet year for nuclear power development in 2017

2017 saw four new reactors connected to grids for the first time, only four construction starts, and the retirement of three reactors. A net gain of 1012 MWe capacity on line plus two small uprates totalling 31 MWe. All the new grid connections were Chinese in one way or another: Chashma 4 in Pakistan, 315 MWe net built by China, Yangjiang 4 and Fuqing 4, each 1020 MWe, and then Tianwan 3 of 990 MWe net in China (see above).  Construction starts, with first major concrete, were Shin Kori 5 in South Korea, Kudankulam 3 a Russian unit, in India, Rooppur 1 a Russian unit in Bangladesh, and Xiapu fast reactor in China (see above). China continues to pause its new build program pending the start up of the first Generation 3+ Westinghouse AP1000 reactors at Sanmen and Haiyang, since these are basic to further plans. Their first Areva EPR is also due to start up soon, though with less forward relevance in China.

The three reactors finally shut down were Kori 1 in South Korea, after 40 years operation, Oskarshamn 1 in Sweden, after 45 years, and Gundremmingen B in Germany after only 33 years - by political edict.  These removed 2333 MWe net from world clean reliable capacity.
(amended 6/1/18 to include Rooppur & Shin Kori)

New reactor fuel gets corporate boost as Enfission is launched

Since the early days of nuclear power practically all nuclear reactor fuel has been as uranium oxide, a stable ceramic with high melting point. However, it has some features which are not ideal, and one stream of research has been returning to using metal fuels. The leader here has been Lightbridge, which has designed zirconium-uranium alloy 4-lobed fuel rods with much higher surface area than normal ones. The uranium has higher enrichment than usual to compensate for the alloy dilution which gives it a much higher melting point than pure uranium metal. However, because of the five times better thermal conductivity, the fuel actually functions at a much lower temperature than ceramic fuels. It is expected to give 17% more power in existing reactors with little modification, and 30% more in those designed for it. Its purpose is to improve both safety and economics.

In March 2016 Lightbridge entered into an exclusive joint development agreement with Areva NP (now Framatome) to set up a 50-50 US-based joint venture that would develop, fabricate and commercialize fuel assemblies based on the metallic fuel technology. This has now been launched as Enfission.  Framatome is a leading fuel manufacturer, with 27% of world capacity for light water reactor fuels. It is owned by EdF (75.5%), Mitsubishi Heavy Industries (19.5%) and Assystem (5%). Several major US utilities - Exelon, Duke, Dominion and Southern Company - have been involved with Lightbridge’s development and the first use of the new fuel in a US commercial power reactor is expected about 2021, with commercial sales by 2026.
WNN 26/1/18  Fuel fabrication

International Energy Agency flags increased emissions

The OECD’s International Energy Agency (IEA) has reported for 2017 the first real increase in carbon dioxide emissions for four years, a 1.4% increase to reach 32.5 billion tonnes. It attributed this to “robust global economic growth of 3.7%, lower fossil fuel prices and weaker energy efficiency efforts”. Energy demand worldwide increased by 2.1% in 2017, according to IEA preliminary estimates, compared with 0.9% for several years prior.  Fossil fuels met 70% of the growth in demand.  "The growth in energy-related carbon dioxide emissions in 2017 is a strong warning for global efforts to combat climate change, and demonstrates that current efforts are insufficient to meet the objectives of the Paris Agreement," the IEA said.  World electricity demand grew by 3.1% to 25,570 TWh last year, significantly higher than the overall increase in energy demand. China and India accounted for 70% of this increase. Nuclear generation accounted for 10% of global power production last year, up 3% relative to 2016.
WNN 22/3/18.   Climate change policy

US-France cooperation on fast reactors

Having abandoned that technology over thirty years ago when it led the field, the US government is reviving its interest in fast neutron reactors. An agreement this week between the US Department of Energy (DOE) and the French Atomic Energy Commission (CEA) is the latest manifestation of this.  Today Russia is well ahead in fast reactor technology, but France and China are active also. In the USA, five fast neutron reactors have operated, and several more designed.  GE-Hitachi is marketing its Prism reactor as a Generation IV design based on US experience. France has accumulated 45 reactor-years experience with two commercial-scale fast reactors and is well ahead in designing new models, notably CEA’s Astrid. In 2014 the Japan Atomic Energy Agency, Mitsubishi Heavy Industries and Mitsubishi FBR Systems concluded an agreement with the CEA and Areva NP (now Framatome) to progress cooperation on Astrid, and since then Japanese input has increased. The joint basic design is expected to be complete in 2019 and a prototype to be operating in 2025.

All seven operational fast reactors use sodium coolant, as do 10 of the 15 designs under active development (and all those decommissioned), and the new agreement relates to sodium-cooled designs. There is some 400 reactor-years experience with these over six decades in eight countries, and it is one of the main concepts being developed in the Generation IV International Forum, with some US participation. Fast reactors have a higher energy density in the core, can utilise virtually all the uranium that is mined (rather than only about one percent of it) and can burn long-lived actinides which currently make disposal of high-level nuclear wastes more expensive.
WNN 27/3/18.   Fast reactors, Generation IV reactors


China starts construction of large fast reactor

After several years’ uncertainty regarding technology options, construction has started on an essentially indigenous 600 MWe China demonstration fast reactor (CDFR).  The CFR600 is being built for China National Nuclear Corporation (CNNC) at Xiapu in Fujian province. It will run on mixed-oxide fuel and is expected on line in 2023. It is derived from the successful 65 MWt China Experimental Fast Reactor (CEFR) which has operated since July 2010 and is incidentally producing 20 MWe. It was built by Russia’s OKBM Afrikantov at the China Institute of Atomic Energy (CIAE) near Beijing. CNNC expects fast reactors to be the main technology deployed in China by mid century and calls this “a landmark project for … China’s nuclear industry”. A 2016 projection has five CFR600 units being built by 2030, followed from there by the commercial-scale CFR1000, with over one hundred in service by 2050.

CDFR ‘project 2’ related to a high-level agreements with Russia in 2009 and 2012, which envisaged building a pair of BN-800 fast reactors such as unit 4 now operating at Beloyarsk. These were due to be built inland at Sanming in Fujian province from 2013. In the event the Beloyarsk BN-800 is more of a test bed for new fuels than a pioneer commercial plant, and Russian focus is now on preparing to build multiple BN1200 units as full-size fast reactors.
WNN 29/12/17.  China NP

New reactor connected to grid in China

Tianwan 3 has now been connected to the grid in Jiangsu province after 60 months construction.  This AES91 plant uses a Russian VVER-1000 reactor, producing 990 MWe net, with Areva instrument and control systems. The turbine generator sets are from China’s Dongfang Electric, using Alstom Arabelle low-speed technology. It started up in September.

Units 5 & 6 at Tianwan are Chinese ACPR1000 units under construction, but units 7 & 8 are planned as 1200 MWe Russian VVER reactors.
WNN 2/1/18.  China NP

New reactor starts commercial operation in China

Tianwan 3 in Jiangsu province has been handed over to its owners by Russia’s Atomstroyexport.  It was connected to the grid at the end of December and its twin, unit 4, is about a year behind it.  Units 5 & 6 at Tianwan are Chinese ACPR1000 units under construction, but units 7 & 8 are planned as 1200 MWe Russian VVER reactors, and negotiations on these are proceeding. China has 38 operating reactors totalling 34.6 GWe net.
WNN 8/3/18.  China NP

Fuel loading into first AP1000 reactor in China

After delayed approval from the National Nuclear Safety Administration, the first of four Westinghouse AP1000 reactors in China, at Sanmen, is loading fuel. This is well ahead of the two AP1000 units in USA. The Sanmen project is 51% owned by China National Nuclear Co (CNNC). It is little affected by Westinghouse’s problems in USA.

Westinghouse itself in USA is still operating in bankruptcy reorganization brought about by the delays and cost overruns of two AP1000 construction projects in that country, one of which continues building. In March a US Bankruptcy Court approved Westinghouse’s exit from the process with a new owner taking over from Toshiba for about $4.6 billion.

Earlier this month fuel loading commenced into the first Taishan EPR reactor in China. That project is a joint venture of China General Nuclear (70%) and Electricite de France (30%), and has moved ahead of two European EPR projects which began construction earlier.
WNN 25/4/18 & 28/3/18.   China NP


US extends tax break for new nuclear capacity

A Bipartisan Budget Act passed by congress and signed into law includes nuclear production tax credits that were initially created under the Energy Policy Act 2005 to provide federal support for projects like Georgia Power’s Vogtle units 3 & 4. Previously new reactors had to be operating before 2021 to be eligible, but this deadline is now removed, so that tax credits of $18/MWh over eight years are available for up to 6000 MWe of new capacity.  So both Vogtle 3 & 4 as well as the NuScale Power’s small modular reactor (SMR) project at the Idaho National Laboratory could benefit.  At 90% capacity each new Vogtle reactor would produce 8.8 TWh/yr and hence receive $158 million per year.

The US Nuclear Energy Institute hailed the Act as “a vote for continued American leadership in nuclear energy, environmental stewardship and thousands of jobs.” Similar production tax credits have been paid for output from unlimited wind and solar PV capacity for many years, indexed to inflation and hence now $23/MWh, coupled with priority grid access for these unreliable sources. These arrangements severely handicap the competitiveness of power from the 99 US established nuclear reactors.
WNN 12/2/18.  US NP

Licensing for new US nuclear power plant

The US Nuclear Regulatory Commission (NRC) has approved the issuance of combined construction and operating licences (COLs) for two proposed AP1000 reactors at Florida Power and Light's (FPL's) Turkey Point plant in Florida. FPL applied in 2009 for a combined construction and operating licence for the two reactors adjacent to its units 3 & 4 there. Last month it filed an application for a second licence renewal for those units 3 & 4, which would take their operating lives out to 80 years, to 2052 and 2053. FPL will delay any final decision whether to proceed with the two new AP1000 reactors until towards the mid 2020s.
​WNN 6/4/18.  US NP

USA renews its resolve on used fuel disposal

The US House of Representatives has voted decisively (340 to 72) in favour of reversing former president Obama’s veto of 1982-legislated plans for disposal of the US inventory of used nuclear fuel and other high-level wastes. The Nuclear Waste Policy Amendments Act 2018 also provides for setting up privately-owned central interim storage facilities meanwhile, and increases the planned repository size from 70,000 to 110,000 tonnes. The bill was widely supported by industry and unions. Companion legislation is pending in the Senate, which is generally thought to favour interim storage more than restarting the Yucca Mountain repository project. Nevada senators, who brought about the presidential attempt to abort the project, remain opposed. However, attempts from that quarter to weaken the House bill failed (80 to 332).

The bipartisan Act “amends the Nuclear Waste Policy Act of 1982 to direct the Department of Energy (DOE) to initiate a program to consolidate and temporarily store commercial used nuclear fuel during the development, construction, and operation of a permanent nuclear waste repository”. Under the original Act, Yucca Mountain in Nevada was designated (in 1987) as the site for a permanent deep geological repository, and January 1998 was set as the date when DOE should begin removing used fuel from nuclear power plant sites. Nuclear utilities have sued the federal government after DOE failed to begin collecting their spent fuel by then, and settlements have cost US taxpayers more than $7 billion. Utilities have been forced to build substantial dry storage capacity at power plant sites to cope.

Despite several delays to the program, in June 2008 a construction licence application for the Yucca Mountain repository was eventually submitted to the Nuclear Regulatory Commission (NRC) by the DOE.  In 2009 the application was withdrawn, the NRC terminated its review of the project, and DOE’s Office of Civilian Radioactive Waste Management was then closed down.  In 2013, NRC review of the licence application officially resumed after a court order. Over $35 billion remains in the Nuclear Waste Fund, levied from utilities (plus accumulated interest), though collections (@ 0.1 cent/kWh generated) have ceased.
WNN 11/5/18.   US fuel cycle

Westinghouse sold to Canadian investment company

Westinghouse in the USA filed for Chapter 11 bankruptcy in March 2017, after struggling to fund growing cost overruns at its two US nuclear plant projects. The company listed assets of $4.3 billion and liabilities of $9.4 billion in the filing.  Since then, its parent Toshiba Corporation has had to pay billions of dollars in damages for two reactor construction projects in the USA - $8.9 billion was provided in its accounts in May, and it has been eager to sell the whole company. Westinghouse nuclear fuel business and its operating plant businesses remain profitable.  Now Brookfield Business Partners, together with institutional partners, has agreed to acquire the whole company from Toshiba for total of about $4.6 billion in equity and funded by long-term debt. The sale will be through the bankruptcy process.  Brookfield is "focused on owning and operating high-quality businesses that benefit from barriers to entry and/or low production costs." Other bidders have 30 days to make competing offers.

Westinghouse was arguably the premier nuclear reactor designer of the last century, with about half the world’s reactors based on its designs to some degree. Nevertheless, it has struggled commercially. In 1999 it was acquired by British Nuclear Fuels Ltd for $1.1 billion and promptly took over Sweden’s ABB for $0.5 billion. In 2006 BNFL sold it for $5.4 billion to Toshiba (77%) and Shaw Group (20%), “taking Toshiba Group's energy systems business to the global level”. Westinghouse then partnered with the Shaw Group for engineering, procurement, and construction (EPC) contracts, particularly the two AP1000 projects in USA. Shaw was taken over by CB&I in 2013 for about $3 billion. Then in 2015 Westinghouse effectively bought it for $229 million after CB&I had incurred major losses on the business which jeopardised the two US projects. Westinghouse announced that “This deal supports (our) strategic growth initiatives by expanding the company’s capacities across its global footprint,” notably by taking it into nuclear plant construction.

In China, Westinghouse and Shaw (now CB&I) have contracts with the State Nuclear Power Technology Corporation (SNPTC) for the four AP1000 units being built there, the first two of which are expected on line early this year, but these extend only to oversight of construction.  The construction role in USA arising from Westinghouse’s disastrous purchase of CB&I Stone & Webster was the basis of Toshiba’s problems.

Toshiba also owns NuGeneration’s 3.4 GWe Moorside project in UK, and discussions are well advanced to sell this to Korea Electric Power Company (KEPCO).
WNN 4 & 18/1/18  US NP

US merchant generator files for bankruptcy

FirstEnergy's merchant arm, FirstEnergy Solutions (FES), owner of its three nuclear power plants, has filed for Chapter 11 bankruptcy reorganization. The parent company said that this was a milestone in its "previously announced strategy to exit the competitive generation business and become a fully regulated utility company with a stronger balance sheet, solid cash flows and more predictable earnings." Included in the filing is 10,200 MWe of generating capacity largely comprising 5,400 MWe in three large coal-fired plants and 4,048 MWe in three nuclear plants with four reactors - Davis-Besse and Perry in Ohio and Beaver Valley in Pennsylvania, all operated by FES’s First Energy Nuclear Operating Co (FENOC).  FES said that it had sufficient liquidity to continue normal operations while its problems are sorted out.

FES earlier announced that it intended to close down its three nuclear generating stations in 2020 and 2021 because they were unprofitable in the current market with low-cost gas and subsidised wind power. The company called on “elected officials in Ohio and Pennsylvania to consider policy solutions that would recognize the importance of these facilities to the employees and local economies in which they operate, and the unique role they play in providing reliable, zero-emission electric power for consumers in both states [and so to] make it feasible to continue to operate these plants in the future.” In particular FirstEnergy proposed that on a plant-by-plant basis, coal-fired and nuclear generators should negotiate with the grid company for “just and reasonable cost-based rates that provide for full cost recovery”, similar to the arrangement in regulated markets.
WNN 3/4/18.  USA NP

US returns to fast reactor R&D

A bipartisan bill passed unanimously by the US House of Representatives has authorized the construction of a “versatile reactor-based fast neutron source, which shall operate as a national user facility” by 2026, and allocated almost $2 billion for it. This will be a research reactor for “development of advanced reactor designs, materials and nuclear fuels,” and is reported to be at least 300 MWt. There is a world shortage of fast reactor research capacity, especially for fast neutron materials testing for Generation IV reactor developments. At present the only fast neutron research reactor is BOR-60 in Russia, at Dimitrovgrad, which is also being used by French researchers. A new one – MBIR - with four times the irradiation capacity, is under construction there as the centrepiece of an International Research Centre.

Through to 1985 the US Department of Energy invested heavily in fast reactor R&D, and five fast neutron reactors were operated, with several more designed.  The flagship unit was the EBR-II, a 62.5 MW thermal demonstration reactor which typically operated at 19 MWe, providing heat and over 2 TWh of power to the Idaho laboratory over 1963-94.  Having demonstrated a complete sodium-cooled breeder reactor power plant with on-site reprocessing of metallic fuel, the emphasis then shifted to testing materials and fuels (metal and ceramic oxides, carbides and nitrides of U & Pu) for larger fast reactors.  Finally it became the prototype for an Integral Fast Reactor (IFR) using metallic alloy U-Pu-Zr fuels.  IFR program goals included demonstrating inherent safety apart from engineered controls, improved management of high-level nuclear wastes by recycling all actinides so that only fission products remained as high-level waste, and more fully using the energy potential of uranium. These were demonstrated, though the whole program was aborted in 1994 by the Clinton administration. IFR fuel first used in 1986 reached 19% burnup (compared with 3-4% for conventional reactors), and 22% was targeted.
WNN 16/2/18.   US NFC

New Westinghouse micro reactor to be evaluated in Canada

The Canadian Nuclear Safety Commission is to conduct a pre-licensing vendor design review (VDR) of Westinghouse’s eVinci micro reactor, along with other designs including NuScale’s small modular reactor. The eVinci is a radically new concept among the many small reactor designs now coming forward for commercial nuclear power. It is a heatpipe reactor, using a fluid in numerous sealed steel heatpipes to conduct heat from the hot fuel (where the fluid vapourises) to the external condenser (where the fluid releases its latent heat of vapourisation) with heat exchanger. No pumps are needed to effect continuous isothermal vapor/liquid internal flow at low pressure. The principle is well established on a small scale, but here a liquid metal is used as the fluid and reactor sizes up to several megawatts are envisaged. Experimental work on reactors for space has been with much smaller units (about 100 kWe), using sodium as the fluid. They have been developed since 1994 as a robust and low technical risk system for space exploration with an emphasis on high reliability and safety.

The eVinci reactors would be fully factory built and fuelled. As well as power generation, process heat to 600°C would be available. Units would have five- to ten-year life, with walk-away safety due to inherent feedback diminishing the nuclear reaction with excess heat, also effecting load-following.
WNN 20/2/18.  Small reactors

US states call for action on used fuel

On the 20th anniversary of the US Department of Energy’s default on its obligation to take over management and disposal of used nuclear fuel, the national organization of state public utility commissions has called on the Trump administration and Congress to appropriate funds needed to restart the Yucca Mountain repository program. "It has been 36 years since the Nuclear Waste Policy Act became law and 20 years since the government defaulted on its obligation," the president of the National Association of Regulatory Utility Commissioners reminded the government. "We still have no nuclear repository, and worse yet, we don't even have the semblance of a nuclear waste program," he said. Under the Nuclear Waste Policy Act of 1982, DOE was to begin disposing of utility spent fuel by January 31, 1998. The nuclear utilities would fund that program with a 0.1 cent per kilowatt hour fee collected from customers in relation to nuclear-generated electricity sold. Today all the used fuel remains, albeit safely and securely, at reactor sites.

DOE suspended collection of the fee in 2014 under a federal court order after it dismantled the repository program at Yucca Mountain, Nevada four years earlier, due to political pressure under the Obama administration. "The Nuclear Waste Fund currently has a balance well in excess of $30 billion and continues to earn interest of more than $1 billion a year, yet any progress on the program is constrained by the Congressional failure to provide meaningful funding." New legislation to address the matter is currently stalled in congress.
WNN 1/2/18  US NFC

First US space reactor test for several decades

The US National Aeronautics and Space Administration (NASA) has announced the successful testing of its KiloPower reactor – intended to provide power to missions to the Moon, Mars and beyond. Testing of a prototype was undertaken at NASA's Nevada National Security Site over November to March. KiloPower is a fast-neutron reactor to produce up to 10 kilowatts of electrical power continuously for ten years or more. The 1 kW prototype uses a solid, cast uranium-235 reactor core of 32 kg, hence low core power density, and relies on negative thermal feedback for control. Reactor heat is transferred via passive sodium-filled heat pipes, with the heat then converted to electricity by two Stirling engines. The final phase of testing simulated several failure modes. This is the first US nuclear-powered ground test on an in-space nuclear reactor for several decades.

Space missions require reliable, long-lasting power sources both for propulsion once they are in space and to power experiments and equipment. Radioisotope thermoelectric generators (RTGs) are widely used as power sources in satellites and other space vehicles such as the Mars rover Curiosity. However, virtually all RTGs are powered by the radioactive decay of plutonium-238, which is now in short supply, and for higher power requirements, fission power systems have a distinct cost advantage over RTGs. Experience of the KiloPower project will be fed to a MegaPower project, with 2 MWe units.
WNN 3/5/18.   Reactors for space



French nuclear industry restructuring completed

With two Japanese companies each taking up a 5% share in the fuel cycle company resulting from Areva’s commercial distress, the restructuring of the French nuclear industry over three years is complete.  The new company, Orano, is now owned by the French state (45.2%), the Commission of Atomic Energy and Alternative Energy (4.8%), Areva SA (40%), Mitsubishi Heavy Industries (5%) and Japan Nuclear Fuel Ltd (5%).  Each 5% Japanese share involved a €250 million investment.  Orano comprises the mining, conversion, enrichment, fuel fabrication, reprocessing and other back-end services of Areva.  JNFL is responsible for the Rokkasho reprocessing plant in Japan, the completion of which has been delayed many times, and its mixed-oxide (MOX) fuel fabrication plant.

Areva earlier saw the new fuel cycle company as “refocused on less-risky cash flow generating operations” compared with its disastrous reactor business and thus able to refinance on capital markets and “in a good position to grow.”  Orano intends to increase its Asian revenue from 20% to 30% of total by 2020 and achieve positive net cash flow this year. It plans to invest €1.8 billion in modernising its plants by 2025.

The other major company formed in the French restructuring is Framatome, taking over most of Areva NP, it is now largely owned by Electricite de France (EDF).  This comprises the reactor design and vendor side of Areva, with fuel design, supply and services to existing nuclear power plants. Mitsubishi Heavy Industries, with a similar industry profile, also invested about €483 million in this company to hold 19.5% of it. The hugely delayed and greatly over-budget Olkiluoto 3 project in Finland was excluded, and stays with Areva SA.
WNN 27/2/18.   France

Name change: Areva’s subsidiary New NP, taken over largely by EDF at the end of December, has been renamed Framatome. This is the name of its French predecessor to 2006.
WNN 4/1/18.  France


Ten-year legal contest over Finnish reactor resolved

With the building of a large new reactor in Finland running ten years late and greatly over budget, the question of financial liability between supplier and customer has loomed large. As it may for other projects elsewhere in the world.

In December 2003 Teollisuuden Voima Oy (TVO) signed a €3.2 billion turnkey contract with Areva NP and Siemens for the first Areva 1650 MWe EPR unit, to be built at Olkiluoto alongside two existing reactors, with commercial operation expected in mid 2009. Construction started in May 2005 but delays were encountered, particularly on the reactor section.  Siemens and its subcontractor supplied the turbine section much quicker. Grid connection is now expected in December 2018 and commercial operation in May 2019. The cost overrun is considerable.

The parties turned to the International Chamber of Commerce in Stockholm in 2008 to arbitrate on the question of who should pay for additional costs arising. The Areva-Siemens consortium claimed €3.52 billion against TVO in relation to the delay and cost overruns of the project. TVO counterclaimed for 2.6 billion for costs and losses. The ICC arbiters favoured TVO in two partial rulings and “rejected the great majority of the supplier's contentions”, but did not rule on compensation. TVO has now announced that it has agreed with Areva for that company to pay €450 million in compensation for the project’s delay, €328 million immediately and the balance when the unit goes into service, or by the end of 2019 at the latest.  The agreement also provides a €150 million incentive payment to Areva if the unit is completed on time, to be in full operation by May 2019, and up to €400 million penalty to TVO if it isn’t.

Olkiluoto 3 was the world’s first EPR to start construction and it was followed by Flamanville 3 in France, then two Taishan units in China. This week fuel was being loaded into the first Taishan unit, and Flamanville was grappling with quality assurance questions on welding.
WNN 12/3/18.   Finland


Further German reactor shut down

As reported last week, RWE’s 1284 MWe Gundremmingen-B reactor was finally shut down at the end of December in line with German government policy, after 33 years operation at around 90% average capacity factor. This is the tenth unit to be closed post-2011 and leaves only seven power reactors in operation in Germany with a combined generating capacity of 9444 MWe, as the country’s CO2 emission reduction falls well short of target. The next scheduled closure of a German reactor is EnBW's 1392 MWe Phillipsburg 2 pressurised water reactor in 2019.
WNN 2/1/18.  Germany, Energiewende


New Russian reactors in operation

The fourth Rostov reactor in the Volga region has been connected to the grid, with Mr Putin there for the occasion.  The 1011 MWe (net) unit started up five weeks earlier.  It is Russia's 36th reactor in a fleet providing 18% of the country's electricity, and which will now meet more than half the demand in the southern region.  It is the last of the successful VVER-1000/V320 series of Russian reactors, and new construction is of 1200 MWe models.  From mid March, with the completion of a new grid link, it is reported that the Rostov power plant will supply Crimea, captured from Ukraine in 2014.
WNN 1/2/18.   Russia NP

The first of two new 1170 MWe (gross) reactors of the Leningrad power plant at Sosnovy Bor near St Petersburg has been connected to the grid, after starting up four weeks earlier. Construction has taken 113 months and net power is 1085 MWe. Early construction problems set back the schedule, and successful repair of the oldest two RBMK units at the plant removed any urgency. Eventually four of the new VVER-1200 reactors will replace the four operating RBMK-1000 units there, commissioned from 1974 to 1981, and now due to be shut down over the next decade. This is the first V491 version of the VVER-1200 to operate, and it is the model intended to be built at Tianwan in China.  Two are under construction in Belarus. It brings to 38 the number of nuclear power reactors operating in Russia, with total of about 29 GWe net.
WNN 9/3/18.  Russia NP

New Russian reactor starts up

The first of two 1170 MWe (gross) reactors comprising phase II of the Leningrad nuclear power plant has been started up at Sosnovy Bor, near St Petersburg. Eventually four of the new VVER-1200 reactors will replace the four operating RBMK units there, commissioned from 1974.  Construction of Leningrad II-1 started in October 2008, with unit 2 being 18 months behind. These are the first reactors of their particular type (V491).
WNN 6/2/18.   Russia NP

Construction start on new Russian reactor

First main concrete has been poured for the first unit of the Kursk II nuclear power plant, which will replace the present one there – four RBMK reactors which came on line over 1978 to 1986. The new reactor is the first of the VVER-TOI type, an upgrade of the 1200 MWe ones now operating and under construction as AES-2006 power plants. A construction licence was issued in June 2016 for unit 1 and in October 2016 for unit 2, and site works then commenced. The total investment in building unit 1 will exceed RUR 200 billion ($3.2 billion). A second phase of construction from 2028 will be for units 3 & 4.

The VVER-TOI of 1255 MWe gross has been developed from Moscow Atomenergoproekt’s version of the AES-2006 nuclear plant. Rosatom says that it intends this to be standard for new projects in Russia and worldwide, with minor variations. Initial service life is 60 years with high (70 GWd/t) fuel burn-up and 18 to 24-month fuel cycle.  Licence extensions to 80 years are envisaged. It is claimed to require only 130-135 tonnes of natural uranium per gigawatt year, compared with typical 190 tU now.  It can undertake daily load following down to 50% thermal power, and has significant frequency control capability compared with AES-2006 reactors.  It will use an Alstom-derived low-speed turbine-generator. Further VVER-TOI reactors are planned for Nizhny Novgorod, Smolensk II, Central, and Tatar power plants.
WNN 30/4/18.   Russia NP

Russia clears floating nuclear power plant for deployment

The Russian State Expert Examination Board (Glavgosexpertiza) for major infrastructure has approved the deployment of the floating nuclear power plant Akademik Lomonosov at Russia's northernmost city of Pevek. It will be operated by by Rosenergoatom, the nuclear power plant operator subsidiary of Rosatom. At present it is still at the Baltiysky Zavod shipyard in St Petersburg. In May it will be towed through the Baltic Sea and around Norway to the Atomflot base at Murmansk for fuel loading and start-up about October, before continuing to Pevek for commissioning in 2019 after licensing by the nuclear regulator Rostechnadzor. The 21,500 tonne hull - 144 metres long, 30 m wide - was launched in June 2010, and the two 35 MWe KLT-40S reactors, similar to those in icebreakers, were installed in October 2013. The plant is intended to replace the 44 MWe capacity of the 1970’s Bilibino nuclear power plant in the Chukotka district.
WNN 11/1/18.  Russia NP


Ukraine aims for scaled-down nuclear plans

Since 2006 Ukraine has had plans to more than double its already large nuclear power capacity to reduce its dependence on Russian gas. Currently more than half of Ukraine’s electricity is from its 15 operating reactors at four sites. A nuclear power strategy involving building and commissioning 11 new reactors with total capacity of 16.5 GWe (and nine replacement units totaling 10.5 GWe) to more than double nuclear capacity by 2030 was approved by the government in 2006 to enhance Ukraine's energy independence. The strategy is moot in the absence of finance. Meanwhile plans for Russia to complete Khmelnitski 3 & 4, both 1000 MWe and respectively 75% and 28% complete when work stopped in 1990, have been aborted politically. 

The two oldest units in Ukraine are VVER-440 reactors at Rovno which came on line in 1981 and 1982.  These have had licences extended to 2030-31 and together provide 760 MWe net. Their replacement was to be part of the above plans, but now Energoatom has signed an agreement with US-based Holtec International to replace them by 2030 with multiple Holtec SMR-160 units “as a pilot project”, and to set up a manufacturing hub for these reactors.  Holtec welcomed Ukraine becoming “the first mover in Holtec’s small modular reactor program”, so that it could “become a world leader in the emerging small modular reactor industry”.  The SMR-160 units are also envisaged as cogeneration industrial heat sources.

Holtec already has a well-established presence in Ukraine. The national Central Spent Fuel Storage Facility (CSFSF) for VVER fuel is being built by Holtec International near Chernobyl under a $460 million contract, and is due to accept the first used fuel next year.  Holtec is also building the $411 million Chernobyl Dry Storage (ISF-2) project, for RBMK fuel from Chernobyl, and due for completion this year. Ukraine’s Turboatom, a major source of steam turbines for nuclear and other plants, is building Holtec’s Hi-Storm 190 casks for the CSFSF, that agreement being celebrated as “the dawn of a new chapter in US-Ukraine cooperation.” (Ukrainian power plants employ 47 Turboatom-made turbines and 43 Russian ones, for which Turboatom is now making spare parts.)
WNN 2/3/18.  Ukraine, Small reactors


Further reactor restarts in Japan

Unit 3 of Kansai’s Ohi nuclear power plant in Japan's Fukui Prefecture has restarted. The reactor - the sixth to be restarted after clearing the country's revised safety regulations and local political sensitivities - is expected to resume commercial operation early next month. It last ran July 2012 to September 2013, following the Fukushima accident of March 2011.
WNN 15/3/18.  Japan NP

Kansai Electric Power Company has restarted unit 4 of its Ohi nuclear power plant in Japan's Fukui Prefecture and reconnected it to the grid. The 1180 MWe pressurised water reactor - which has been offline since September 2013 - should resume commercial operation in early June. As a result, Kansai is lowering retail prices by 4%.
WNN 9/5/18, Kansai 11/5/18.   Japan NP

Kyushu Electric Power Co. has restarted its 1180 MWe Genkai 3 reactor and reconnected it to the electricity grid. Commercial operation is expected in April. Unit 4 is expected to restart in May. Kyushu’s application to confirm both reactors’ conformity with new safety requirements following the Fukushima accident was filed in July 2013, and NRA commissioners approved the two units' safety in January 2017. Loading of fuel, including MOX, took place in February this year.  Kansai expects to start its Ohi 4 in May. This will bring to four the number of similar large PWR reactors back in service, additional to the five 870-890 MWe ones. No boiling water reactors have yet been restarted.  Applications have been made for 25 of the 40 operational reactors - 9 PWR, 2 ABWR and 7 BWR are pending.

Shikoku has announced that it will decommission its Ikata 2 reactor rather than spend a lot of money upgrading it. To return it to service and extend its operating lifetime from 40 to 60 years would require a huge investment for the safety measures required to comply with Japan’s new regulatory standards. This brings forward its planned closure from 2022, and removes 538 MWe net from potential restarts. It will be the ninth old reactor decommissioned in the last four years, seven of them smaller ones.

Nuclear energy is expected to account for 20-22% of Japan's power generation in 2030, with a similar portion coming from renewable sources. The remainder of the country's power generation will be met by coal (26%), LNG (27%), hydro and other renewables (about 22%) and oil (3%), according to Japan's latest energy policy.
WNN 23 & 27/3/18.  Japan NP


Potential progress on large Indian nuclear plant

A new agreement between Electricite de France (EdF) and the Nuclear Power Corporation of India Ltd (NPCIL) has been signed to advance the prospects of building six French reactors at Jaitapur. The saga started with a February 2009 general agreement with Areva and then a framework agreement 22 months later for the first two 1600 MWe EPR units with Alstom turbine-generators, along with 25 years supply of fuel.  Arrangements and negotiations have since proceeded, with French government finance in the form of a 25-year loan at 4.8% to cover the expected $21 billion cost of the first two reactors.

However, as with two other major nuclear projects in India involving western reactor vendors, progress stalled due to India’s unique third party liability laws passed in 2010. The international Convention on Supplementary Compensation for Nuclear Damage (CSC) entered force for India in May 2016. Then in July 2016 EdF submitted a fresh proposal to NPCIL and the Ministry of External Affairs for six EPR units, but seeking further guarantee of “the same level of protection” in relation to liability that is available at the international level, and citing the Vienna convention on liability. It is not clear how this matter is addressed in the new agreement.  EdF will provide the main equipment for the plant, and NPCIL will build it. For the first two reactors, EdF will undertake all engineering studies and component procurement. Local content may reach 60% for the last two of the six reactors.
WNN 12/3/18.  India

Middle East

Construction start for first Turkish nuclear power plant

Immediately following a construction licence from the Turkish Atomic Energy Authority, first concrete was poured for the first of four Russian VVER-1200 reactors at Akkuyu, on Turkey’s eastern Mediterranean coast.  The presidents of both Russia and Turkey participated in the ceremony by video link from Ankara, Mr Putin stressing that “the successful implementation of this project will be a symbol of the dynamic, progressive development of Russian-Turkish interaction and partnership, Russian-Turkish friendship." The $25 billion project is expected to provide about one tenth of Turkey’s electricity and reduce reliance on imports. The first unit is due on line in 2023 on the 100th anniversary of founding the Republic of Turkey.

Site works at Akkuyu have been underway since about 2014.  Russia’s Novovoronezh II is the reference design, with its first unit grid-connected 18 months ago. The project company, JSC Akkuyu Nuklear, is a subsidiary of Rosatom, and this is its first foreign nuclear plant on a build-own-operate (BOO) basis. Turkey’s state power company will buy 70% of the power from the first unit at US$ 123.50 per MWh for 15 years.  A consortium of three Turkish companies which were set to take a 49% share in the project pulled out early this year. Rosatom says that 35-40% of construction work will be localised.
​WNN 3/4/18.  Turkey

New reactor in UAE completed

Construction completion of the UAE’s first nuclear power reactor at Barakah has been marked ceremonially on site by the President of South Korea and the Crown Prince of Abu Dhabi. It is the first of four APR-1400 units built by a consortium led by the Korea Electric Power Corporation (KEPCO) for the Emirates Nuclear Energy Corporation.  Fuel loading is planned for May and an operating licence is expected mid-year. The other three units are 92%, 81% and 67% complete respectively.  Together they will provide about one quarter of UAE’s electricity, replacing imported gas.

The South Korean president said the UAE has agreed to cooperate with South Korea in efforts to win orders for nuclear power plant construction projects in Saudi Arabia.
WNN 26/3/18.  UAE


You may also be interested in